Topic 3 - data-based questions

Page 145

1. (Non-smokers without the cancer are controls in this study as they do not have the risk factor of smoking, or the cancer.)
A is more common; as the percentage with A and G or A and A is much higher than the percentage with G and G (the Hardy Weinberg equation could be used to predict the base frequencies: frequency of G is $\sqrt{0.126}=0.355$; frequency of A is $1-0.355=0.645$);
2. a) patients with cancer $=43.7+9.8=54 \%$; without cancer $=35.6+9.4=45 \%$;
b) a higher percentage of those with the cancer were smokers than those who did not have the cancer, suggesting that smoking increases the risk of the cancer / gastric adenocarcinoma;
3. the base A is associated with a higher risk; $19.3 \% \mathrm{GG}$ total for those with the cancer versus 22.0% for those without the cancer; 83.7% AG plus AA total for those with cancer versus 78% for those without cancer;
4. increased more in smokers who have the A allele; proportion of smokers with AG or AA is $\frac{43.7}{(43.7+9.8)}=0.82$; proportion of non-smokers with AG or AA is $\frac{35.6}{(35.6+9.4)}=0.79$;

Page 153

1. 20 in mice (or 21 if the X and Y chromosomes are considered to be separate types); 23 in humans (or 24 if the X and Y chromosomes are considered to be separate types);
2. $X, 1,14$;
3. 1 and 13 ;
4. common evolutionary history / common mammal ancestor; evolutionary divergence was relatively recent; rate of mutation / change is low; conserved function / roles of genes;
5. duplication of some chromosomes; fission of some chromosomes; fusion of some chromosomes; translocation of parts of chromosomes to a different chromosome;

Page 156

1. such an organism would be sterile; meiosis requires synapsis/chromosome splitting; odd number means meiosis;
2. not supported when considering plants; meaning of complex needs to be established as all are multicellular; no difference in complexity of cat and dog yet dog has more chromosomes etc; threadworm is least complex so possible; would need to see chromosome number of prokaryotes etc;
3. some chromosomes may be long/fused;
4. chimpanzee and human have different chromosome numbers (48 versus 46); chimpanzee and human have a common ancestor so either chimp number increased by fission / duplication or human number decreased by fusion of chromosomes;

Page 159

1. a) chromosome 1 ;
b) chromosome 21;
2. a) chromosome 2 is longer; chromosome 2 has the centromere nearer the middle of the chromosome; banding pattern is different suggesting differences in structure;
b) the X chromosome is significantly longer; the banding pattern differs; the centromere of the X chromosome is nearer to the middle of the chromosome and is toward one end in the Y chromosome;
3. male; has an X and Y chromosome;
4. it has three chromosomes \#21; the child will have Down's syndrome;

Page 161

1. similarities between the life cycle of a moss and of a human include: both have haploid sperm and egg; both have an ' n ' stage; both have a ' $2 n$ ' stage; both have mitosis, meiosis and fertilization; both have a zygote stage;
2. in humans the zygote gives rise to either male or female in individuals but in moss, the zygote gives rise to sporophyte; in moss sporophyte gives rise to spores whereas diploid human gives rise to gametes; eggs and sperm created by mitosis in moss but meiosis in humans; moss plant can give rise to male or female, but separate genders create gametes in humans; in moss, there is a gametophyte and a sporophyte, but we don't have this in humans; meiosis gives rise to gametes in humans, but to spores in moss;

Page 167

1. limited change in incidence until mid-30s; exponential increase after mid-30s;
2. a) $1 \%+/-0.5 \%$;
b) 1.7-1.0; 0.7\%;
3. chromosome 21 is one of the smallest of the human chromosomes; trisomies of other chromosomes have more serious effects; causing death of the zygote / embryo / fetus before birth; missing chromosomes / chromosome mutations also too harmful for the individual to survive;
4. data doesn't discuss risk of advanced age of father; before age of 40, risk of non-disjunction is still relatively small; other possible complications besides chromosomal abnormalities; risk might be balanced by other benefits of postponed parenthood;

Page 173-174

1. 198 grey: 72 albino; 2.75 grey: 1 albino;
2. albino is recessive; the presence of the albino is masked by the grey allele; in a cross of heterozygotes, approximately 25% are albino;
3. GG / homozygous dominant is grey; Gg / heterozygous is grey; gg / homozygous recessive is albino;
4. the parental phenotypes are grey and albino; the parental genotypes are GG and gg; the alleles in the gametes are G and g; the hybrid phenotype is grey; the hybrid genotype is $G g$; the alleles in the gametes are G and g;

	G	g
G	GG	Gg
g	Gg	gg

5. white fur and red eyes due to lack of the same pigment / melanin; due to a single mutation in gene for an enzyme needed to make the pigment;

Page 174

1. both typical and annulata have black and red colouration; both have spots; annulata has more black pigmentation;
2. in both cases, they are pure breeding strains; homozygous for the gene influencing coloration;
3. larger black spots than typica; black in more parts of the wing cases than typica; less black than annulata; do not have the rear black strip crossing from left to right side that annulata has;
4. a) key to alleles with A^{T} as allele for typical and A^{A} as allele for annulata (or other suitable symbols); F_{1} genotypes are $\mathrm{A}^{\mathrm{T}} \mathrm{A}^{\mathrm{A}}$; gametes produced by F_{1} are A^{T} and $\mathrm{A}^{\mathrm{A}} ; \mathrm{F}_{2}$ genotypes are $\mathrm{A}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}, \mathrm{A}^{\mathrm{T}} \mathrm{A}^{\mathrm{A}}, \mathrm{A}^{\mathrm{A}} \mathrm{A}^{\mathrm{T}}, \mathrm{A}^{\mathrm{A}} \mathrm{A}^{\mathrm{A}}$; corresponding phenotypes are typical, hybrid, hybrid, annulata; Punnett grid used as the genetic diagram;
b) 1: 2: 1; typical: hybrid: annulata;

Page 176

1. a) $\mathrm{Bb} \times \mathrm{Bb}$;

	B	b
B	$B B$	$B b$
B	$B b$	$B b$

prediction is: 3 bilateral: 1 radial; observed is: 2.38 bilateral: 1 radial;
b) fewer bilateral than expected, but close enough to support the prediction;
c) lack of success in pollination/attracting pollinators; reducing the number of recessive alleles;
2. a) LL' \times LL';

	L	L^{\prime}
L	LL	LL^{\prime}
L^{\prime}	LL	$\mathrm{L}^{\prime} \mathrm{L}^{\prime}$

b) predict ratio of 1 light: 2 bluff: 1 ringed; actual observed 1.1:2.1: 1.0; within sampling error, these results are close to predicted results;
3. a) do not fit Mendelian ratio; different results from wild type \times poky crosses are different depending on which the female parent is; wild type \times wild type gives some poky offspring, but not 3 : 1 ratio;
b) due to a mutation in a mitochondrial gene; mitochondria are inherited from female parent;
c) mutations to produce the poky allele of the mitochondrial gene;

Page 183

1. it is recessive as unaffected parents in generation I produce affected children;
2. a) 100% that they will be homozygous recessive;
b) 0%;
c) 0%;
3. a) Dd; the mother is dd;
b) Dd or DD ; most likely DD as condition is rare and person is marrying into family with history of disease;
4. cystic fibrosis; sickle cell anemia; other example of autosomal genetic disease caused by a recessive allele;

Page 186

1. a) $10 / 70 * 100 \%=14.3 \%$
b) $47 / 56^{*} 100 \%=83.9 \%$
2.

3. higher doses increase deaths in both cases; more deaths due to leukemia than cancer; nearly quadruple at $0.5-1 /$ double at >1;
4. less than 0.0005 Sv ; as this level gives 14% increase in leukemia; and 2% increase in cancer; which is unacceptably high;

Page 188-189

1. 7;
2. data suggests Neanderthals more closely related to humans; because of the fewer differences in bases between humans and Neanderthals; minimum difference in human-Neanderthal exceeds maximum human-human difference, therefore humans and Neanderthals not the same species;
3. based on the bones of a single Neanderthal/limited support;

Page 195

1. a) type of leaf; equal misting; all in same type of tube; same method of applying pollen; same number of larvae on each leaf; same length of time of monitoring; time at which larvae were weighed;
b) to ensure that the only variable was genetic modification; so the effects of this variable could be isolated from other variables;
2. a) 5 larvae per leaf $x 5$ replicates $x 3$ treatment groups $=75$ larvae;
b) to be able to identify anomalous results; to assess the reliability / variability of the results; to ensure that differences are not due to sampling error / variability between larvae;
3. error bars provide an indication of variability of data; if error bars overlap, likely to be no difference if difference in means exist;
4. mortality is only seen in group where leaves were dusted with GMO pollen; difference is significant suggesting an effect of GM pollen;
5. larvae may find leaves dusted with pollen unpalatable; pollen may provide nutrients and reduce the need for consumption of leaves; consumption of pollen/GM pollen may affect the health of larvae and reduce appetite;
6. 0.26 (g) / mid-way between other treatment groups; because leaf consumption is mid-way between them;
7. whether the larvae would consume leaves dusted in pollen; leaves still connected to plants in wild; density of caterpillars on one leaf affecting how much of one leaf they eat; whether mortality rates in the wild are normally this high.
